

Central European Institute of Technology BRNO | CZECH REPUBLIC

Assoc. Prof. Pavel Pořízka, Ph.D. Laser spectroscopy as an advanced sensor in polymer recycling

IFATI4-2021 November 8, 2021

Outline

State-of-the-art LIBS

- theory and motivation
- limitations and challenges
- instrumentation development
- Application driven research
 - needs for polymer analysis
 - LIBS in polymer recycling
 - calibrating the LIBS Scout
- Conclusion

IFATI4-2021

International Forum Advanced Technology for Industry 4.0

RG1-6: Advanced Instrumentations and Methods for Materials Characterization

- Main objectives react to recent trends and R&D activities in a broad range of scientific fields worldwide including aerospace, automotive, power generation industry, biology and electronics.
- Research Group Leader Prof. Jozef Kaiser
- 32 Researchers / 30 PhD students (42.8 FTE)
- 2 Research lines
 - Computed Tomography
 - Laser Spectroscopy

Laser Spectroscopy laboratory

- Head of the Research Line Dr. Pavel Pořízka
- Our vision is to transfer high-end science to daily routine.
- Our mission is
 - to bridge the gap between technical and bio-sciences,
 - to develop state-of-the-art instrumentation and
 - toprovide professional analytical services.

State-of-the-art LIBS

Theory and motivation Limitations and challenges Instrumentation development

Laser-Induced Breakdown Spectroscopy in *stand-off*, large-scale, and high-throughput analysis

<u>benefits</u>

- large scale mapping
- micro-scale resolution
- real-time response
- multielemental
 - incl. C, H and light elements (Na, Li, Mg)
- high sensitivity (ppm ≈ µg/g level)
- depth profiling

applications

- bio-research and toxicology
- geology and agriculture
- automotive and industry
- polymer production

LIBS and other techniques of analytical chemistry

Advantages and drawbacks

analytical technique	sample		instrumentation		analytical performance		
	preparation	throughput	stand-off	handheld	sensitivity	stability	carbon
LIBS	none	high	yes	yes	ppm	medium	yes
X-Ray Fluorescence	none	high	no	yes	ppm	medium	no
Spark Discharge-OES	none	medium	no	yes	ppb	low	yes
Flame AAS	extensive	low	no	no	ppb	high	yes
ICP-OES/MS	extensive	low	no	no	ppt	high	yes

References: thermofisher.com and chem.libretexts.org

Laser-ablation assisted spark discharge optical emission spectroscopy

S. Grünberger et al. Optics & Laser Technology 123, 2020, 105944. j.optlastec.2019.105944

S. Grünberger et al. Spectrochimica Acta Part B 169, 2020, 105884. j.sab.2020.105884

LIBS instrumentation for Industry 4.0


Instrumental challanges

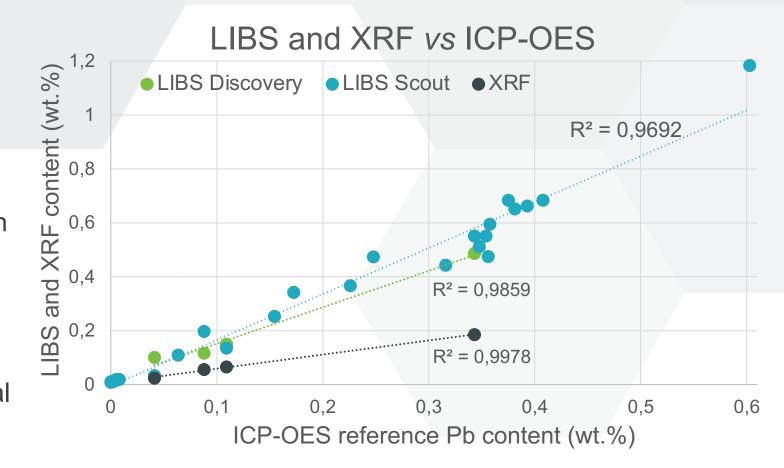
- Real-time and *in-situ* analysis
- Robust system
 - stand-off or
 - handheld/remote
- Affordability: cost-to-performance ratio

Case study: LIBS for firing ceramics

\$CEITEC

Instrumentation development

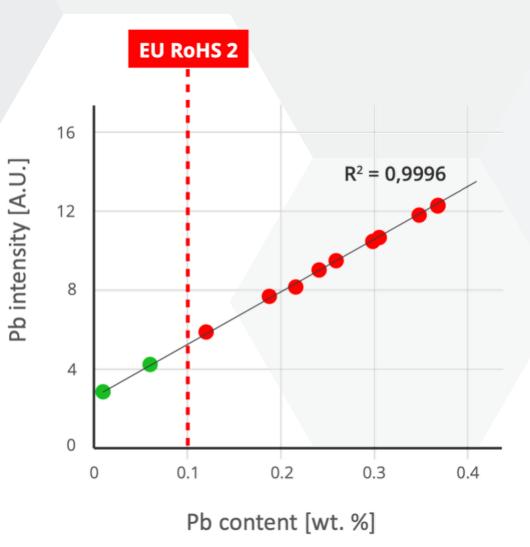
Transfer of technology



LIBS analysis for the Industry 4.0

Analytical challenges

- Ablation of various matrix (main polymer) and heterogeneous mixtures
- Necessity of matrix-matched standards and external calibration
- Real-time feedback with high accuracy
- Robust calibration model with respect to fluctuation in the analytical performance of a typical LIBS system


Application driven research

Needs for polymer analysis LIBS in polymer recycling Calibrating the LIBS Scout

Challenges of polymer analysis

- Limits by EU legislative
 - RoHS, WEEE, and REACH
 - max. content of toxic metals
 - 0,1 wt.% Pb, Hg, and Cr(VI)
 - 0,01 wt.% Cd
- Methodology
 - prediction of Pb in
 - selected for its highest content in polymer matrices
 - LIBS analysis output: OK/NotOK

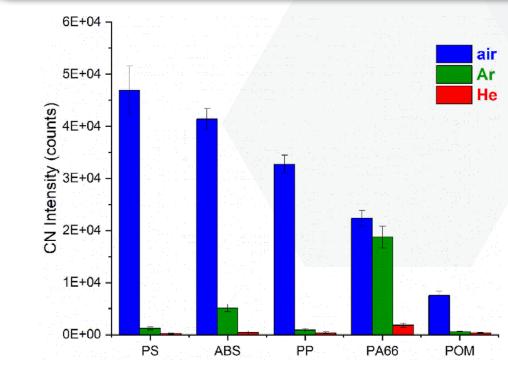
Polymer ablation

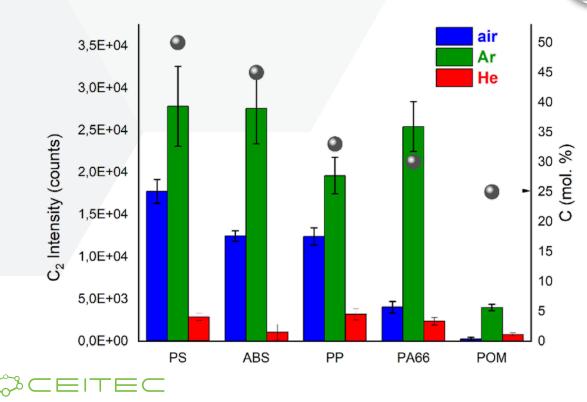
- Laser ablation of polymers
 - detection of C₂ and CN bands
 - varying experimental conditions

Contents lists available at ScienceDirect

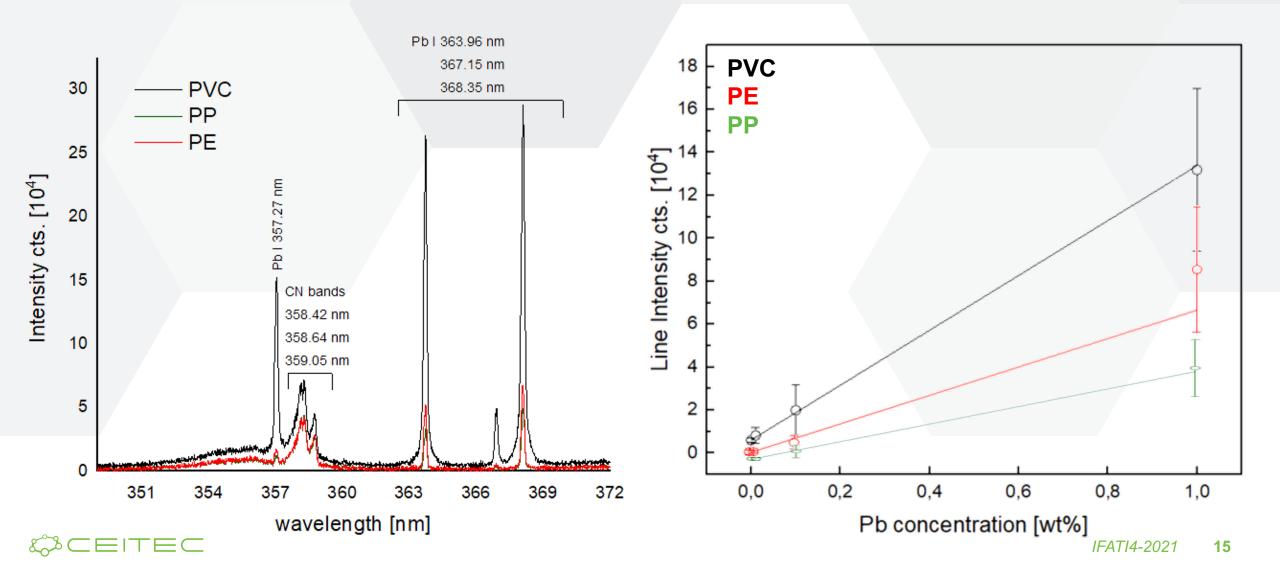
Polymer Testing

Check for updates


journal homepage: http://www.elsevier.com/locate/polytest


DOI: 10.1016/j.polymertesting.2021.107079

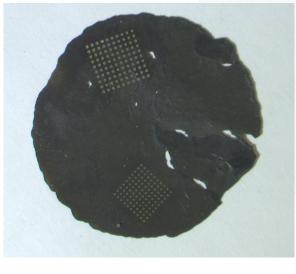
Laser-Induced Breakdown Spectroscopy analysis of polymers in three different atmospheres


Ivana Chamradová^a, Pavel Pořízka^{a, b,*}, Jozef Kaiser^{a, b}

^a Central European Institute of Technology, Brno University of Technology, Purkyňova, 656/123, 612 00, Brno, Czech Republic
^b Faculty of Mechanical Engineering, Brno University of Technology, Technická, 2896/2, 616 69, Brno, Czech Republic

Matrix effect beyond ablation of individual polymers

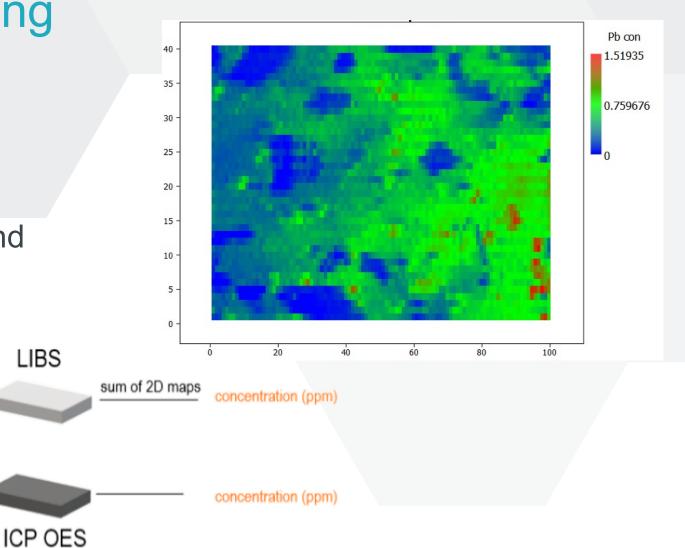
LIBS in polymer recycling



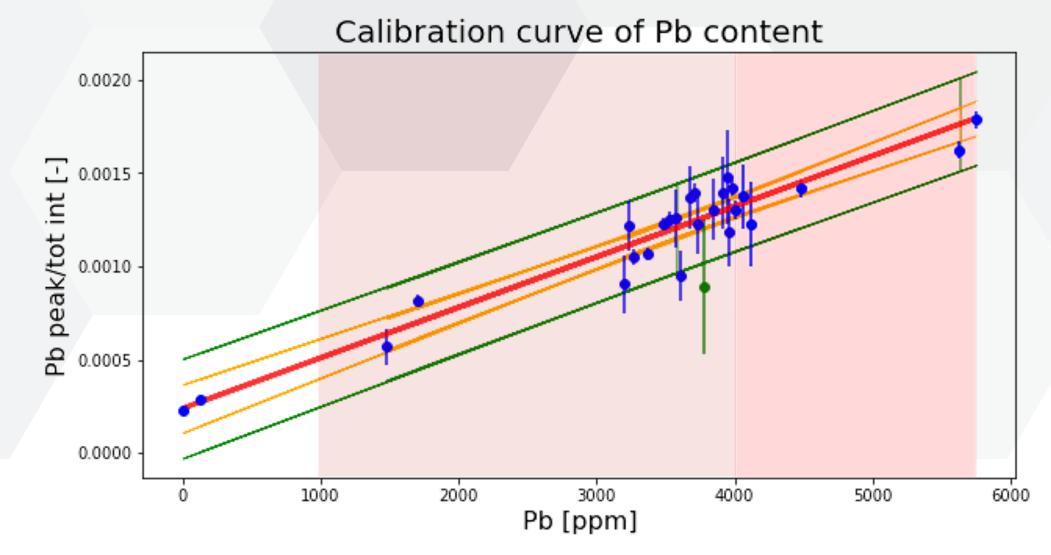
real samples from polymer production, recycling of post-consumer eWaste

piece of tested product (left) from recycled material (right)

creation of matrix-matched standards and their reference using ICP-OES after acid digestion



LIBS in polymer recycling


- From LIBS analysis (Pb intensity image) to Pb content
- Creating calibration standards

sample

 Optimizing ablation conditions and data processing

LIBS in polymer recycling

Conclusion

Ongoing and future work

- Improvements in instrumentation
 - stand-off detection with real-time feedback to production
 - robust and durable systems for harsh environments for in-line analysis
 - optimizing the trade-off between analytical performance and system+analysis costs
- Improvements in sample analysis and data processing
 - higher accuracy and trueness through high number of LIBS spectra
 - implementation of machine learning algorithms
 - to mitigate matrix effects
 - mitigation of spectral interferences and non-linearities
 - transfer learning data library transfer between individual LIBS systems
 - transfer through non-linear algorithms

Acknowledgement

Pavel Pořízka, Jozef Kaiser, David Prochazka, Jan Novotný, Patrik Cebo, Daniel Holub, and many more JK acknowledges the grant (FSI-S-20-6353) support of the Brno University of Technology.

Cooperation

Contacts

Advanced Instrumentations and methodlogies for material characterizations

- **Prof. Jozef Kaiser, Ph.D.** (jozef.kaiser@ceitec.vutbr.cz)

Laser Spectroscopy laboratory

- Assoc. Prof. Pavel Pořízka, Ph.D. (pavel.porizka@ceitec.vutbr.cz)

